Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci.
نویسندگان
چکیده
Most models proposed to explain the disease-associated expansion of (CTG)n.(CAG)n and (CGG)n.(CCG)n trinucleotide repeats include the formation of slipped strand DNA structures during replication; however, physical evidence for these alternative DNA secondary structures has not been reported. Using cloned fragments from the myotonic dystrophy (DM) and fragile X syndrome (FRAXA) loci containing normal, premutation, and full mutation lengths of repeats, we report the formation of novel alternative DNA secondary structures that map within the repeat tracts during reannealing of complementary strands, containing equal lengths of repeats, into linear duplex DNA molecules. Linear duplex DNA molecules containing these alternative DNA secondary structures are characterized by reduced electrophoretic mobilities in polyacrylamide gels. These alternative secondary structures are stable at physiological ionic strengths and to temperatures up to at least 55 degrees C. Following reduplexing, the CAG strand of the (CTG)n.(CAG)n repeats is preferentially sensitive to mung bean nuclease, suggesting the presence of single-stranded DNA in the alternative DNA structure. For (CTG)17, which is a repeat length found in normal individuals, less than 3% of the DNA molecules formed alternative DNA structures upon reduplexing. DNA molecules containing (CTG)50 or (CTG)255, which represent premutation and full mutation lengths of triplet repeats, respectively, formed a heterogeneous population of alternative DNA structures in >50% of DNA molecules. The complexity of the structures formed increased with the length of the triplet repeat. The relationship between repeat length and the propensity of formation and complexity of the novel structures correlates with the effect of repeat length on genetic instability in human diseases. These are the first results consistent with the existence of slipped strand DNA structures. The potential involvement of these structures, which we term S-DNA, in the gentic instability of triplet repeats is discussed.
منابع مشابه
Expandable DNA Repeat and Human Hereditary Disorders
Background & Aims: Nearly 30 hereditary disorders in humans result from an increase in the number of copies of simple repeats in genomic DNA, including fragile X syndrome, myotonic dystrophy, Huntington’s disease, and Friedreich’s ataxia. One the most frequently occurring types of mutation is trinucleotide repeat expansion. The present study was conducted with the aim of investigating the cause...
متن کاملStructural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus.
The mechanism of disease-associated trinucleotide repeat length variation may involve slippage of the triplet-containing strand at the replication fork, generating a slipped-strand DNA structure. We recently reported formation in vitro of slipped-strand DNA (S-DNA) structures when DNAs containing triplet repeat blocks of myotonic dystrophy or fragile X diseases were melted and allowed to reanne...
متن کاملFragile X and other trinucleotide repeat diseases.
Hereditary unstable DNA is composed of strings of trinucleotide repeats, in which three nucleotides are repeated over and over (ie CAGCAGCAGCAG). These repeats are found in several sites within genes; depending on their location, the number of triplet repeats in a string can change as it is passed on to offspring. When the number of repeats increases to a critical size, it can have a variety of...
متن کاملAbnormal Base Excision Repair at Trinucleotide Repeats Associated with Diseases: A Tissue-Selective Mechanism
More than fifteen genetic diseases, including Huntington's disease, myotonic dystrophy 1, fragile X syndrome and Friedreich ataxia, are caused by the aberrant expansion of a trinucleotide repeat. The mutation is unstable and further expands in specific cells or tissues with time, which can accelerate disease progression. DNA damage and base excision repair (BER) are involved in repeat instabili...
متن کاملHuman MSH2 binds to trinucleotide repeat DNA structures associated with neurodegenerative diseases.
The expansion of trinucleotide repeat sequences is associated with several neurodegenerative diseases. The mechanism of this expansion is unknown but may involve slipped-strand structures where adjacent rather than perfect complementary sequences of a trinucleotide repeat become paired. Here, we have studied the interaction of the human mismatch repair protein MSH2 with slipped-strand structure...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 35 15 شماره
صفحات -
تاریخ انتشار 1996